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Abstract

Recent experiments (2015 Nature 521 196; 2017 Nat. Commun. 8 395) have presented evidence for
electron pairing in a quantum dot beyond the superconducting regime. Here, we show that the impact
of an attractive electron—electron interaction on the full counting statistics of electron transfer through
aquantum dot is qualitatively different from the case of a repulsive interaction. In particular, the sign
of higher-order (generalized) factorial cumulants reveals more pronounced correlations, which even
survive in the limit of fast spin relaxation.

1. Introduction

Attractive electron—electron interaction in BCS superconductors leads to the formation of a condensate of
Cooper pairs [1]. In the context of unconventional and high- T, superconductors, short-range attractive
interactions are considered that generate local electron pairs. Different microscopic origins such as bipolaronic,
excitonic, plasmonic, or chemical mechanisms have been proposed [2]. Irrespective of the nature of the
interaction, a local attractive pairing potential can be described by a negative- U Anderson impurity model [3].

Despite the long-running interest, only recently attractive interaction has been studied experimentally on a
single electronic orbital in quantum dot devices based on carbon nanotubes with auxiliary polarizers [4] and ata
LaAlQ; /SrTiOj; interface [5-8], where electron—electron attraction has been found even above the critical
temperature for superconductivity. Moreover, theoretical proposals have suggested to utilize the coupling to a
mechanical resonator to engineer attractive interaction in a quantum dot [9, 10]. Experimental evidence for
electron—electron attraction has been found in the dependence of the differential conductance on applied bias
and gate voltages and magnetic fields. A very recent theoretical work has explored signatures of the attractive
interaction due to a slow driving of parameters [11].

In this paper, we show that an attractive interaction has a qualitatively different impact on the full counting
statistics [12, 13] of electron transfer than a repulsive one. The electron transfer statistics is characterized by the
probability distribution Pp(#) that N 2> 0 electrons have been transferred in a given time interval [0, ¢]. It can be
measured via a sensitive electrometer such as a quantum point contact [14—19] or a single-electron
transistor [20, 21].

Particularly convenient tools to characterize the distribution Px(f) are (generalized) factorial cumulants
Com(t) = 071In M,(z, t)|,—¢ of order m derived from the generating function

M(z, 1) =) (z + HNPn (1) e

N

Due to the involved z-transform, these cumulants are adapted to integer-valued stochastic variables such as the
number N of tunneled electrons. Choosing the parameter s equal to 1 yields factorial cumulants. They can be
expressed by a linear combination of factorial moments (N) (t) := Y°, N"™ Py (t), i.e., expectation values of
the falling factorials N := N(N — 1) ... (N — m + 1). Thefirst G;; = (N)and second factorial cumulant
G, = (N? — (N)* — (N)are (after dividing by the length t of the time interval) related to the average current
and the current noise. The case s = 1yields generalized factorial camulants. The extra factor s™ that is
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Figure 1. Excitation energies for the two considered transport scenarios with (a) repulsive (U > 0) and (b) attractive (U < 0)
electron—electron interaction. The leads are filled with electrons up to the electrochemical potential i, with r = L, R. The excitation
energies E, — E,/ toadd or remove one electronare E, — Eq = ¢, for transitions between |0) < |o)and Eq — E, = €5 + U for
transitions between |0) < |d), whereas & denotes the opposite spin to o. (¢) Quantum dot states | x) € {|0), |1), ||}, |d)} and
possible transition rates I\, describing a transition from | x’) to | x). (d) Effective three-state system for a fast spin relaxation I}y > T'.

introduced by this generalization allows to study dynamical phase transitions [22, 23], superconducting
correlations [24], topologically protected modes [25, 26], or deterministic dynamics [27-29].

Higher-order cumulants contain more information than the average number of transferred charges does. It is well
known that a super-Poissonian Fano factor (equivalent to a positive second-order factorial cumulant C; , > 0)
indicates interaction-induced correlations between the transferred electrons. One of the advantages of using factorial
cumulants is that its sign can be used as an indicator of correlations not only for the second—but also for higher-order
cumulants [30-32]. Furthermore, the possibility to choose the parameter s different from 1 increases the sensitivity to
detect correlations [32]. It is, therefore, more than natural to use generalized factorial cumulants to elucidate qualitative
differences between the full counting statistics of systems with attractive and repulsive interaction, respectively.

The outline is as follows. First, in section 2, we introduce the negative- U Anderson impurity model and
present the master equation formalism to calculate (generalized) factorial cumulants. Results are presented in
section 3. In particular, we find that higher-order factorial cumulants violate a sign criterion for attractive
interaction and fulfill it for repulsive interaction. The requirements on the charge detector to resolve the
predicted results are discussed in section 4. We finish in section 5 with the conclusions.

2. Negative-U Anderson impurity

The minimal model to study electron transport through a quantum dot subject to attractive interaction is the
negative- U Anderson impurity model [33, 34]

H = Haot + Hiun + Hieads- (2
The full Hamiltonian is build up from three terms,

Haot = Z 6gc;cg + Uchch, 3)
o=T.l

Hun = Z tyclane + hac, (4)
rko

Hieads = Ek: Eko B, Arko (5
rko

The single-level quantum dot is modeled by H 4, with fermionic creation (annihilation) operators c; (c,) foran
electron with spin o = T,|. Spin degeneracy of the orbital level ¢ is lifted by the Zeeman splitting A due to an
applied magnetic field, ;| = € £ A/2. Theinteraction energy U for double occupancy is negative for attractive
interaction (and positive for repulsive interaction). The quantum dot eigenstates are | x) € {|0), [1), 1), [d)}
with eigenenergies E, € {0, €}, €], ¢ + ¢ + U} for the empty dot, occupancy with a single spin-T electron,
occupancy with a single spin- | electron, and two electrons on the dot. The resulting excitation energies

E, — E, toadd or remove one electron are depicted in figures 1(a) and (b). In particular, for transitions between
|0) | a) weget E, — Ey = ¢, and for transitions between |o) < |d) the excitation energies are

Eq — E, = €5 + U, whereas & denotes the opposite spin to .

The dot is weakly tunnel coupled to aleft r = Land aright r = R normal-conducting metallic lead,
described by the tunneling Hamiltonian H,,,. The operators a fkﬂ (a,xo) create (annihilate) an electron with
energy €y, momentum k, and spin o in lead r. The metallic leads are modeled as reservoirs of noninteracting
electrons Hje,qs with flat bands near the Fermi energy and a spin-independent density of states p,. A bias voltage
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Vis symmetrically applied such that the electrochemical potentials are y; = —puyp = eV /2. The time scale of
tunneling is set by the tunnel-coupling strength I, = (27/7%)|t,|* p,. We emphasize that the tunneling
amplitude #, and the density of states p, enter our calculations only via the parameter I',. It is convenient to define
thesum 2I' = I'y + I'rand theasymmetry a = (I}, — Ix) /(11 + Ix),implyingI; g = (1 £ a)I'.

Supporting the experimental feasibility of a full counting experiment, which favors a rarely changing dot
occupation, we assume a weak tunnel-coupling strength #T' < kg T < |U]|, A, eV compared to all other
energy scales. Therefore, we simulate the dynamics of the system by the N-resolved master equation (sketched in
figure 1(c))

By = —(Tho + Do) PR + ToiPh_y (1) + Ty Ph_ s, ©)
Pl = LoPY — Loy + Lyy + 0P + LaPY )
By = TPy + TPy — (o) + TapPh + TaPioy, ®)
Py = TPl + Ty Py — (Tq + Do) P, ©9)

up to firstorder inI". Here, P{ (¢) is the probability that N electrons have tunneled out of the quantum dotina
given time interval [0, f] and the dot is in state | x) at . Transitions increasing N are depicted by dashed arrows in
figure 1. Opposite transitions (depicted by solid arrows) leave the electron counter N unchanged. The sequential
tunneling rates I, ,» describing a transition from | x’) to | x) are calculated with Fermi’s golden rule

o = Z Frf,(fa)) (10)
r=LR

Too = Z L1 _f;(fa)]) (11)
r=L,R

Fd(r = Z ]-—‘rf;(ffr + U): (12)
r=L,R

La= Y Tl —f(e+ U (13)
r=L,R

where f,(¢) = {exp[(e — p,)/kg T] + 1}~'is the Fermi function of lead . A spin opposite to o is denoted by 7.
Moreover, we also account for spin relaxation by including the spin-flip rate I} in the master equation (6)—(9).
Spin relaxation may originate from hyperfine interaction with a local nuclei bath [35-38]. Spin—orbit interaction
on the other hand leads to spin relaxation only for quantum dots with more than one orbital.

For the following, it is convenient to z-transform the master equation. We obtain P, = W,P, with the
probability vector P,(1) = S 2N (PY, Pl» Py, P{)and the generator of the system’s dynamics

_FTO_FLO ZFOT ZFOl 0
WZ _ PTO _FOT_FdT_FU 0 ZPTd . (14)
Lo Ty —Loy=lay  2lla
0 FdT Fdl *FTd*Fid

The z-transformed master equation is solved by P,(t) = exp(W,t) P with the stationary probability distribution
P, determined by WP, = 0 and the normalization (1, 1, 1, 1) - Py = 1. We sum over all states y and finally
obtain the generating function

MS(Z, t) = (1, 1, 1, 1) . eXP(WZ+5t)PSt (15)
yielding the generalized factorial cumulants of order m

m] ,
cs,m(t)zw , (16)
oz" -0
8"ln My (z, 1)
oz" z=s
to I, see equation (14). Therefore, it follows with equations (15) and (16) that all cumulants C; ,,,(I't) are only
functions of the product IT't. The value of I is not specified in the following calculations since we choose I'* as

the unit of time.

or, equivalently C; ,,(t) = . Note that the generator of the system’s dynamics W, is proportional

3. Revealing interaction by full counting statistics

The most general case of uncorrelated electron transfer is that of independent but nonidentical tunneling events
described by the Poisson binomial distribution [39]
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Figure 2. Factorial cumulants C, ,,,() as function of time  with a fast spin relaxation rate, I'|} — oo, for (a) repulsive (U > 0)and
(b) attractive (U < 0) electron—electron interaction. Other parametersare ¢ + U/2 = 0.35|U|, eV = 1.70 |U|, A = 0.30 |U |,
ks T = 0.01 |U|,anda = 0.2. The sign of (—1)"~'G,,,(¢) is positive for solid and negative for dashed lines. The latter case indicates
correlated electron tunneling due to interaction.

Py =3 ] p® I [0 —p®] (17)

AN jEAN ke Ay

The distribution is build up from different Bernoulli trials. The sum runs over all sets A with N integers selected
from the natural numbers N. A set determines N trials succeeding each with a single-electron tunneling
probability pi(t). The complement Ay = N\ Ay enumerates the not succeeding trials, each with probability
1 = pil(®).

For this situation of uncorrelated electron transfer, the generalized factorial cumulants fulfill the sign
criterion [30, 32]

(=" 'Cym(t) = 0 (18)

forallmifs > 0and foralleven mifs < 0. This criterion is independent of the specific model and transport
regime. In particular, it could be used for techniques [40—45] that address transport beyond sequential tunneling.
Any violation of this sign criterion reveals correlated tunneling events. Since charge-transfer of noninteracting
fermions through a two-lead system can always be described as Poisson binomial [46], those correlations must
originate from some electron—electron interaction. As elaborated in the following, attractive interaction leads to
adifferent and much more pronounced violation than repulsive interaction.

We study the transport situation sketched in figure 1(a) (for U > 0) and (b) (for U < 0), respectively. The
bias voltage eV provides sufficient energy to allow for all quantum dot states |0), | 1), ||)and |d) butis small
enough to exclude one of the possible excitation energies. Consequently, for U > 0 (U < 0) the transition
[1) — |d) (0) — |T))isenergetically suppressed, see figures 1(a) and (b). The temperature requirements for a
sufficient suppressionare kg T < e + U — p; (for U > 0)and kg T < €1 — p (for U < 0), respectively. For
alarger bias voltage, such that all excitation energies are inside the energy window provided by the
electrochemical potentials of the left and right lead, the tunneling rates (10) become independent of U and the
charge-transfer dynamics is equivalent to that of a noninteracting system, U = 0. In the absence of a Zeeman
energy it is impossible to exclude only one excitation energy from transport, because the upper two and lower
two excitation energies are degenerate, respectively.

3.1. Fast spin relaxation
Due to the finite Zeeman energy, spin symmetry is broken, leading to an imbalance between spin-up and spin-
down occupation of the quantum dot. This complicates the dynamics of the stochastic system and correlations
are, in general, more likely to occur. In a real experiment, however, spin relaxation, e.g., due to coupling of the
quantum dot electron to nuclear spins, is often an issue. In the limit of fast spin relaxation, as compared to the
dwell time of the electrons in the quantum dot, a spin-up electron entering the empty quantum dot immediately
relaxes its spin to the energetically favorable spin-down state. This simplifies the system’s dynamics and one has
to check whether and how this affects the correlations in the charge-transfer statistics. Therefore, we discuss two
limiting cases: first the worst case of fast spin relaxation I}; >> I"and, then, in the next section the ideal case of
slow spin relaxation Iy < T'.

In figure 2, the factorial cumulants C; ,,(f) for s = 1 are depicted up to the fourth order m = 4 asa function
oflength  of the measurement time interval. The results for a repulsive interaction (U > 0) are shown in
figure 2(a), those for an attractive interaction (U > 0) in figure 2(b). In order to visualize sign changes in the
logarithmic plot, we use solid lines whenever the factorial cumulants obey the sign criterion equation (18) and
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Figure 3. Factorial cumulants C, ,,,() as function of time t with slow spin relaxation, I'; = 0, for (a) repulsive (U > 0)and (b)
attractive (U < 0) electron—electron interaction. We chose a = 0. Other parameters are as in figure 2. The sign of (—1)"~1G,,,,(¢) is
positive for solid and negative for dashed lines. The latter case indicates correlated electron tunneling due to interaction.

dashed lines when the criterion is violated. As a consequence, any appearance of a dashed line at any time ¢ or for
any order m indicates the presence of correlations.

For the first and the second factorial cumulant, the sign criterion is satisfied for both the U > 0 and the
U < 0 case. Their values in the long-time limit are related to the electron current (I) = lim,_,,, C, ;(¢)/t and
the zero-frequency noise S(0) = lim; ., 2(Ci» + G 1)(t)/t '. Therefore, the Fano factor, that is often used as
an indicator of correlations, remains sub-Poissonian.

The advantage of factorial cumulants, however, is that any order m tests the presence of correlations. For
U > 0, all factorial cumulants, including the higher-order ones, fulfill the sign criterion. This behavior has been
recently observed in experiment [47]. In contrast, for U < 0, already the third cumulant C, ;(¢) displays a
violation of the sign criterion for short times I't < 0.4. Even stronger, the fourth cumulant G, 4(¢) reveals
correlated tunneling on all time scales.

The absence of correlations for a repulsive electron—electron interaction (and the presence of correlations for
an attractive electron—electron interaction) can be better understood by inspecting figures 1(c) and (d). Due to
the fast spin relaxation Iy > T, transitions from | 1) to either |d) or |0) are very unlikely to happen. Before the
corresponding tunneling event takes place, the electron spin has already relaxed to | | ). Now, since | 1) is only a
short-living intermediate state decaying into | | ) we can exclude it from the dynamics by modifying the ingoing
ratesfor|]),ie, Lo — X, Toand |4 — X, I;q4. Effectively, we mapped the full four-state system onto a
three-state system, compare figures 1(c) with (d). However, for a repulsive electron—electron interaction a
transition from | | ) to |d) is energetically prohibited, see figure 1(a). As a consequence, the probability for a
doubly-occupied dot is strongly suppressed as well. Thus, for U > 0 the dynamics can be simplified even further
and we arrive at a simple noninteracting model with two states |0) and | | ) only. Such a two-state system cannot
exhibit correlations in the charge-transfer statistics.

For an attractive electron—electron interaction, on the other hand, the situation is completely different. Only
the probability to find the dot in state | ) is strongly suppressed. Beside |0) and | | ), also state |d) is populated
with non-vanishing probability. The system cannot be mapped onto a two-state system anymore.

3.2. Slow spin relaxation

We now address the opposite limit of slow spin relaxation I'j; < I'. The factorial cumulants (s = 1) depicted in
figures 3(a) and (b) show a similar behavior as for the case of fast spin relaxation (see figures 2(a) and (b)). The
firstand second factorial cumulants do not reveal any correlation, neither for the U > 0 nor for the U < 0 case.
The same is true for the higher-order factorial cumulants in the case of repulsive interaction. Attractive
interaction, on the other hand, do lead to correlations, indicated by a violation of the sign criterion for the third
and fourth factorial cumulant.

The absence of any spin relaxation increases the possibility for correlations. In particular, the mapping to a
two-state system for U > 0 does not work anymore since, now, also the doubly-occupied state |d) can occur
with finite probability. Before state | T) relaxes, a spin- | electron can tunnel into the quantum dot leading to
doubly occupancy. Nevertheless, the qualitative behavior of the factorial cumulants is insensitive to the presence
or absence of spin relaxation.

To increase the sensitivity for correlations, we shift the parameter s of the generalized factorial cumulants
C;,m(t) from s = 1 to smaller values [32]. As an example, we choose s = 0. Then, we indeed observe a violation of

Technically, to obtain the quantities (I) and S(0) concordant with a conventional current noise measurement, we have to count directional,
i.e., electrons tunneling in opposite directions are counted with opposite signs. However, this leads only to slight differences.
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Figure 4. Generalized factorial cumulants C, () with s = 0as function of time t with slow spin relaxation, I}; = 0, for (a) repulsive
(U > 0)and (b) attractive (U < 0) electron—electron interaction. We chose a = 0. Other parameters are as in figure 2. The sign of
(—=1)"~1Cy,(t) is positive for solid and negative for dashed lines. The latter case indicates correlated electron tunneling due to
interaction.

the sign criterion both for repulsive (figure 4(a)) and attractive interaction (figure 4(b)) in the long-time limit.
Furthermore, we find that with the reduced s, already the second-order cumulant is sufficient to detect
correlations, at least in the long-time limit.

The behavior of the cumulants in the short-time limit, on the other hand, seems to be hardly affected by the
parameter s: the repulsive case does not display any correlations of any order 1, while the attractive case shows a
violation of the sign criterion for higher-order cumulants. To understand the short-time behavior in more
detail, we expand the cumulants in dynamical Lee—Yang zeros [48] of the factorial generating function [49]. In
leading order in time, we can approximate M(z, t) ~ 1 + zP,(t) + z*P,(t) with P,(f) o tand P, (t) oc t2.
Terms including Py~ 3 o< t2N~2 decay too fast with decreasing time to be of relevance for the zeros. We obtain

the zeros z,(t) = 72/[P1(t) + 1/P12 (t) — 4P, (t)] o< t~ L. Inserting those two zeros into the expansion

(=) 1C (1) = (m — DY im o< t™ (19)
i %

yields analytic expressions for the generalized factorial cumulants with short-time behavior ¢ . Furthermore, a

violation of the sign criterion can only be achieved for 4P, (¢) > P?(t). Whereas a change between attractive and

repulsive interaction does not (for asymmetry a = 0 only slightly) alter P, (), the effect on the probability P,(¢) is

considerably strong. We obtain in the short-time limit

1
Po(t) = — (T + Lo NP3 + O@td). (20)

For repulsive electron—electron interaction, the stationary probability Pd to find the system in the state of double
occupation is significantly lower than for attractive interaction, compare figures 1(a) and (b). Hence, P,(#) plays a
less important role for U > 0thanfor U < 0.

In the repulsive case, the electrons tend to avoid each other on short-time scales. The transfer statistics can,
therefore, be described by independent single-electron tunneling events, i.e., by equation (17). In the case of
attractive interaction the probability for two successive sequential tunneling-out events is too high to be
compatible with independent electron tunneling.

We emphasize once more that this paper considers the limit of small tunnel-coupling strength
Al < kgT < |U|, A, eV. Therefore, we account only for sequential tunneling events and neglect the rarely
occurring tunneling events of higher-order in I' (e.g., pair-tunneling).

4, Finite-resolution detector

Both a finite amount of data and a finite detector resolution limit the accuracy of any results deduced from
experimental data. Therefore, we estimate in this last part of the paper whether the discussed differences between
U > 0and U < 0 canbe confirmed in an actual experiment despite the aforementioned limitations. We
simulate a stepwise time trace that records the number of electrons {0, 1, 2} on the quantum dot at every instant
of time, see figure 5(a). We start with some initial state | ) and then, weighted by the probability distribution

hy (Tawen) = 22, Tyye™ 2y Tymaver, the system resides for the dwell time 74,1 in that state | y). Afterwards,
weighted by the conditional probabilities Pr(x'|x) = I /(22,7 Iyy), the system jumps into state | x') given it is
in state | y). By repeating this procedure M times, we simulate a time trace that can be interpreted as a
measurement signal of an ideal detector with perfect resolution. In a next step, we artificially incorporate a

6
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Figure 5. Example of a simulated time trace for U < 0 with M = 35 tunneling events for (a) perfect detector resolution 74, = 0 and (b)
finite detector resolution I'7y¢ = 0.1. In (b), missing tunneling events are highlighted with red dashed lines. (c) Generalized factorial
cumulant Gy 3(f) with s = 0 as function of time ¢ with slow spin relaxation, I ; = 0, for an attractive (U < 0) electron—electron interaction.
We chose a = 0. Other parameters are as in figure 2. The numerical results are calculated from an ensemble of 50 time traces, each with

M = 6000 tunneling events and a sampling time I'74¢; = 0.1. The black dots give the mean value (—1)"~!(Cy ;)50 and the error bars
represent the standard deviation §C; 5. The analytical results (— 1)~ 'Cy ; are shown as a dashed red line. The dotted vertical line marks the
sampling time I'74., = 0.1.

finite-resolution 74, of the detector, which is also referred to as sampling time of the detector. Therefore, we
discretize the continuous signal in intervals of length 74, and calculate the average electron number (rounded to
{0, 1, 2}) for each interval. As a consequence, details in the time trace happening on short-time scales t < 7.
are averaged out, compare figure 5(b) to (a). In particular, tunneling events are slightly shifted in time by less
than 74, and some are discarded (highlighted with a red dashed line in figure 5(b)).

In figure 5(c), we illustrate the influence of a finite amount of data (M tunneling events) and the finite
sampling time (74¢; > 0). The red line is the exact analytic result for Cy 5(¢) from figure 4(b), which is recovered
for M — oo and 7g¢r — 0. The black dots (— 1)~ 1(Cy 3(¢))s are obtained from an ensemble average over
50 cumulants simulated by 50 different time traces (each with M = 6000 tunneling events and I'7y4e, = 0.1).
The error bars represent the standard deviation 6C; ,,, (t) from that ensemble average.

We observe that with a moderate detector resolution I'rye; = 0.1 and a relatively short-time trace
M = 6000, the exact result can already be reproduced quite well for times I'ry; < I't < 4, including the sign
and the time dependence Cy 5 o< 13 (see equation (19)).

The finite amount of data M causes the increasing error bars for I't > 4. The finite sampling time 74, leads
to the slightly underestimated absolute value of Cy 5(#) for I'ry; < I't < 4, because the detectorisblind toa
certain fraction of tunneling events. The missing number of events can be estimated from the difference between
exact and simulated first factorial cumulant C; ; = (N) (not depicted here). A more drastic effect of the finite
sampling time is the dip near t = 74.—highlighted with a vertical blue dotted line—and the strong deviations
fort < T4 Due to the finite sampling time, the detector registers direct transitions between |0) and |d). Those
artificial two-electron processes (pair-tunneling events) result in completely different statistics for short times
t < T4 Instead of equation (19), we observe in the short-time limit for all even cumulants C{};" o tM/2 and
for all odd cumulants C;’Sfl oc tm+1D/2149]. Asa consequence, despite a small variance in the experimental data,
the cumulants should not be trusted below t < Ty

5. Conclusions

To conclude, we have illustrated that repulsive and attractive interaction in a quantum dot lead to qualitatively
different full counting statistics of electron transfer. Using the sign of (generalized) factorial cumulants of any
order m as an indicator of the presence of correlations, we find that an attractive electron—electron interaction
has a much stronger tendency to generate correlations than a repulsive one. This finding is robust against spin
relaxation that are often present in real samples. To reveal the qualitatively different behavior for repulsive and
attractive interaction, factorial cumulants of order three or higher need to be tested; the first and second-order
factorial cumulants, related to the average current and the current noise, are not sufficient. By making use of the
parameter s of the generalized factorial cumulants, the sensitivity to correlations can be enhanced such that the
second-order cumulant already displays a violation of the sign criterion. The short-time limit is particularly
suited to highlight the difference between the U > 0 and the U < 0 case. The robust correlations for U < 0in
the short-time limit can be attributed to two successive tunneling-out events occurring with a strong
enhancement of the probability for double occupancy that is absent for U > 0.
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To the best of our knowledge, there is so far in the literature no report of a measurement of a factorial
cumulant that violates the sign criterion, which would be a non-debatable signature and direct proof of
correlations in the charge-transfer statistics. We propose that a quantum dot with attractive electron—electron
interaction is an ideal model system to go for it since correlations are more pronounced and more robust against
spin relaxation than for a repulsive interaction. Experimental setups reported in [5, 6, 8], extended by a sensitive
electrometer such as a quantum point contact or a single-electron transistor, seem perfectly suited to test our
proposal. We estimate that already a moderate amount of data, i.e., M = 6000 tunneling events, and a moderate
detector resolution of I'tg,, = 0.1 is sufficient to reveal the effect of the attractive interaction on the charge-
transfer statistics.
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